
ar
X

iv
:2

50
5.

11
19

9v
1

 [
cs

.C
L

]
 1

6
M

ay
 2

02
5

NoPE: The Counting Power of Transformers with No
Positional Encodings

Chris Köcher
MPI-SWS

Kaiserslautern, Germany
ckoecher@mpi-sws.org

Alexander Kozachinskiy
Centro Nacional de Inteligencia Artificial

Santiago, Chile
alexander.kozachinskyi@cenia.cl

Anthony Widjaja Lin
MPI-SWS and RPTU Kaiserslautern-Landau

Kaiserslautern, Germany
awlin@mpi-sws.org

Marco Sälzer
RPTU Kaiserslautern-Landau

Kaiserslautern, Germany
marco.saelzer@rptu.de

Georg Zetzsche
MPI-SWS

Kaiserslautern, Germany
georg@mpi-sws.org

Abstract

Positional Encodings (PEs) seem to be indispensable for ensuring expressiveness of
transformers; without them attention transformers reduce to a bag-of-word model.
NoPE-transformers (i.e. with No PEs) with unique hard attention mechanisms were
very recently shown to only be able to express regular languages, i.e., with limited
counting ability. This paper shows that, with average hard attention mechanisms,
NoPE-transformers are still surprisingly expressive: they can express counting
languages corresponding to nonnegative integer solutions to multivariate polyno-
mial equations (i.e. Diophantine equations), reasoning about which is well-known
to be undecidable. In fact, we provide a precise characterization of languages
expressible by Average Hard Attention NoPE-Transformers (NoPE-AHATs): they
correspond precisely to what we call semi-algebraic sets, i.e., finite unions of sets
of nonnegative integer solutions to systems of multivariate polynomial inequa-
tions. We obtain several interesting consequences of our characterization. Firstly,
NoPE-transformers can express counting properties that are far more complex than
established models like simplified counter machines and Petri nets, but cannot
express a very simple counting property of PARITY. Secondly, the problem of ana-
lyzing NoPE-transformers is undecidable, e.g., whether a given NoPE transformer
classifies all input strings in one class. To complement our results, we exhibit a
counting language that is not expressible by average hard attention transformers
even with arbitrary PEs but is expressible in the circuit complexity class TC0,
answering an open problem.

1 Introduction

Transformers [42] have emerged in recent years as a powerful model with a plethora of successful
applications including (among others) natural language processing, computer vision, and speech
recognition. Despite the success of transformers, the question of what transformers can express

Preprint. Under review.

https://arxiv.org/abs/2505.11199v1

is still not well-understood and has in recent years featured in a rich body of research works (e.g.
[17, 19, 33, 40]).

Formal language theory has proven to be extremely useful in understanding such expressiveness
issues (e.g. see [40]). More precisely, a transformer T is said to express a formal language L (i.e. a
set of strings over an alphabet Σ), when T can classify those input strings that are in L and those
input strings that are not in L. One class of formal languages that have recently featured in the
study of expressiveness of neural networks — in particular, Recurrent Neural Networks (RNN) and
Transformers — are the so-called counting languages, e.g., see [2, 3, 6, 10, 17, 18, 30, 40, 44, 45].
Intuitively, counting languages (a.k.a. counter languages) require counting the numbers of occurrences
of certain characters in the input string and, perhaps, additionally compare them. Of special interests
are permutation-invariant (counting) languages, i.e., languages that are closed under shuffling the
positions of the letters in the string (e.g. aba ∈ L implies baa ∈ L). An example is the language
MAJ over the alphabet {a, b} consisting of strings with more a’s than b’s (e.g. aab ∈ MAJ but
abb /∈ MAJ). Another example is the language PARITY consisting of all strings over the alphabet
{a, b} with an even number of occurrences of a. A simple application1 of counting is sentiment
analysis, where the number of positive words should exceed the number of negative words in a text.

Which counting languages can transformers express? Answering this question depends on two
crucial parameters: (1) the type of attention mechanism (2) the type of Positional Encodings (PEs).
Most theoretical research results (see the survey [40]) focus on hard-attention mechanisms, which
replace softmax by picking the leftmost position with the maximum attention score (i.e. unique hard
attention) or averaging those (not necessarily leftmost) positions (i.e average hard attention, a.k.a.,
saturated attention). In the sequel, we will write UHAT (resp. AHAT) for Unique (resp. Average)
Hard Attention Transformers. AHATs have been argued to be a realistic approximation of how
transformers function in practice [27]. In this paper, we primarily focus on AHATs, though we will
also discuss implications on soft attention transformers. We now proceed to PEs. Attention is an
operation that aggregates an input sequence via a weighted sum, which treats the elements in the
sequence as a bag (i.e. permutation invariant). PEs — which essentially annotate elements in the
sequence by some positional information like i and sin(2π · i) (for positive integers i) — are often
used to recover the ordering of the elements in the sequence. PEs are, however, known to substantially
increase the expressive power of transformers in theory since essentially all computable PEs of the
form p : N × N → Rd (or p : N × N → Qd) are permitted2. This has led some researchers to
use positional masking (a.k.a. causal attention) [39, 45] — which essentially filters elements in the
sequence (relative to the current position) before applying attention — instead of PEs.

Several recent results shed some lights on the expressivity of transformers on counting languages.
Firstly, UHATs (even with PEs) are known to be strictly contained in the (nonuniform) circuit
complexity class AC0 [2, 19], which characterizes the “inability of counting”, e.g., the most basic
counting language PARITY is not in AC0 [1]. In fact, NoPE-UHATs with positional masking can
express only star-free regular languages [45]. What about AHATs? We know that AHAT languages
(with PEs) are subsumed in the circuit complexity class TC0 ⊇ AC0 [19, 29], which essentially
enriches AC0 circuits with “counting” and “arithmetics”. Whether AHAT languages (with PEs) are
strictly contained in TC0 was posed an open problem [2]. Furthermore, AHAT (with PEs) can express
all counting languages corresponding to the permutation closures of all regular languages [2]. The
question of precisely which counting languages AHATs can express remains open. Furthermore, since
some of these constructions employed non-trivial PEs (e.g. trigonometry functions), the question
arises as well on the role of PEs in recognizing these languages.

Contributions. Our main contribution is to show that NoPE-AHATs are extremely expressive, in
contrast to the case of UHATs [45]: they can express nonnegative integer solution sets to multivariate
polynomial equations (i.e. Diophantine equations), which play an important role in mathematics
(particularly, number theory, and algebraic geometry) and theoretical computer science (particularly,
computability theory [25]). A simple example of such a permutation-invariant language is

SQRT = {w ∈ {a, b}∗ | |w|a < |w|/
√
2}, (1)

1https://medium.com/data-science/sentiment-analysis-with-text-mining-13dd2b33de27
2Some results even refrain from any computability assumption since commonly used PEs (e.g. trigonometry

functions) are not rational, e.g., [2]

2

https://medium.com/data-science/sentiment-analysis-with-text-mining-13dd2b33de27

NoPE-AHAT[≤ 1]
QFPA

NoPE-AHAT
NoPE-AHAT[U]

SemiAlg

AHAT[UT]
τ -SMAT

AHAT TC0

⊊ C. 2
⊊ [46]

⊆

⊆ T. 8
⊊

Theorem 6 Theorem 1

Figure 1: Visualization of our results.

containing words whose proportion of the positions with letter a is at most
√
2. More precisely, we

provide a precise characterization of languages expressible in NoPE-AHAT: finite unions of sets of
non-negative integer solutions to multivariate polynomial inequalities, which we call semi-algebraic
sets (henceforth, written SemiAlg). To the best of our knowledge, this is the first result showing that
a sequential model based on neural networks (including RNN and transformers) could represent all
Diophantine equations. Our main result and its consequences (more below) are summarized in Fig. 1.

Key consequences of our main result: 1. Counting power of NoPE-AHATs in relation to other
established models. 2. Undecidability of reasoning about transformers 3. Counting power of soft
attention transformers

Firstly, NoPE-AHAT can express counting languages (e.g. SQRT) that cannot be expressed by
established models in the literature of transformers (e.g. UHAT with PEs), circuit complexity
(AC0), and formal languages and concurrency theory (e.g. simplified counter machines, Petri nets,
and models of higher-order recursion). In particular, simplified counter machines — frequently
employed in the investigation of the counting power of RNN and Transformers [30, 44] — cannot
recognize permutation-invariant languages beyond linear integer arithmetics (a.k.a. semilinear sets
[32], meaning those definable in existential Presburger arithmetic). Interestingly, it follows from our
characterization that PEs are indispensable for capturing PARITY /∈ SemiAlg using AHAT.

Secondly, we can apply our result to show undecidability of formally verifying (a.k.a. interpreting or
checking robustness) of transformers, which has recently received attention (e.g. see [34]). For less
formal approaches to verification, cf. [4, 11, 20, 36]. [More generally, formal verification of neural
networks (including feed-forward neural networks and RNN) is an established research field (cf.
[21, 24, 36]) with an annual solver competition (cf. [5]).] Especially, our result implies undecidability
of verifying a very simple transformer model with no PEs, left as an open question in [34].

For these aforementioned results, we provide a detailed parameteric analysis in terms of the number of
layers. In particular, with one layer, NoPE-AHAT expresses only linear Diophantine equations (more
precisely, quantifier-free Presburger Arithmetic (QFPA), and so cannot define SQRT. To achieve
powerful counting ability (e.g. resulting in undecidability), we show sufficiency of NoPE-AHATs
with only two layers.

Finally, it was recently shown [46] that soft attention transformers with either PEs or temperature
scaling (written τ -SMAT) can simulate AHAT languages that have the so-called uniform-tieless
property (AHAT[UT]): each layer is either uniform (U) or tieless (T). Our construction of NoPE-
AHATs from SemiAlg in fact satisfies a stronger condition: no tieless layers are needed. As a result,
τ -SMAT can also express counting languages corresponding to solutions to Diophantine equations.

Separation from TC0. To complement our above results, we use an information-theoretic argument
to exhibit a permutation-invariant language that is not expressible by AHAT even in the presence of
PEs. In particular, we show that this implies that AHAT-definable languages are a strict subset of
TC0, answering an open problem from [2].

Organization. After recalling basic definitions in Section 2, we provide a summary of results in
Section 3 as a roadmap for the rest of the paper. We then prove a characterization of the power of
NoPE-AHATs in Section 4, and a parameteric analysis in Section 5. We separate TC0 from AHAT
with PEs in Section 6, and conclude in Section 7. Missing details can be found in the appendix.

3

2 Preliminaries

ReLU neural networks A ReLU node v is a function Qm → Q, where m ∈ N is referred to as the
input dimension, and is defined as v(x1, . . . , xn) = max(0, b+

∑n
i=1 wixi), where wi ∈ Q are the

weights, and b ∈ Q is the bias. A ReLU layer ℓ is a tuple of ReLU nodes (v1, . . . , vn), all having the
same input dimensionality, computing a function Qm → Qn, where n ∈ N is referred to as the output
dimension. Finally, a ReLU neural network N is a tuple of ReLU layers (ℓ1, . . . , ℓk), such that the
input dimension of ℓi+1 is equal to the output dimension of ℓi. It computes a function Qm1 → Qnk ,
given by N (x1, . . . , xm1

) = ℓk(· · · ℓ1(x1, . . . , xm1
) · · ·).

Average hard attention layers An AHA layer is a function λ : (Qd)∗ → (Qe)∗, given by affine
maps Q,K : Qd → Qm, V : Qd → Qk (query, key, and value matrices) and a ReLU neural net
N : Qd+k → Qe. Given an input sequence x = (x1, . . . ,xn) ∈ (Qd)n, the output sequence
y = (y1, . . . ,yn) ∈ (Qd)n is computed as follows. First, one computes the sequences of key,
query, and value vectors: ki = Kxi, qi = Qxi, vi = V xi, i = 1, . . . , n, then a sequence of
attention vectors defined by ai =

1
|P |

∑
j∈P vj , where P ⊆ {1, . . . , n} is the set of those positions

j for which ⟨ki, qj⟩ is maximal. Finally, one sets: yi = N (xi,ai). We say λ is uniform iff the key
and query maps K and Q are constant, it is called tieless iff for all input sequences and all positions
the set of positions P with maximal attention is a singleton.

Average hard attention transformers An AHA Transformer (AHAT) with ℓ layers over a finite
alphabet Σ is a function T : Σ+ → {0, 1}, given by: (i) the “input embedding” function ι : Σ→ Qd1 ,
(ii) the positional encoding p : N2 → Qd1 , and (iii) a sequence of AHA layers λ1 : (Qd1)∗ →
(Qd2)∗, . . . , λℓ : (Qdℓ)∗ → (Qdℓ+1)∗. Given an input word w = a1 · · · an ∈ Σn, the output T (w)
is computed as follows. First, we set x1 = ι(a1) + p(n, 1), . . . , xn = ι(an) + p(n, n). Then
we compute (y1, . . . ,yn) = λℓ(λℓ−1(· · ·λ1(x1, . . . ,xn) · · ·)), and we set T (w) = 1 if and only
if yn[1] > 0, and T (w) = 0 otherwise. We say that T has no positional encoding (NoPE) if the
positional encoding is a constant function.

AHAT language classes We study AHAT that accept languages with an end marker, i.e. the input
word w ∈ Σ∗ is first extended by an end marker $ /∈ Σ, and then T is evaluated on w$. Thus, by
AHAT we denote the class of all languages L ⊆ Σ+ such that there is an AHAT T over Σ ∪ {$}
(with $ /∈ Σ) so that L = {w ∈ Σ+ | T (w$) = 1}. If we restrict the AHAT to have only uniform
(resp. only uniform or tieless layers), then we write AHAT[U] (resp. AHAT[UT]). When we restrict
to AHAT with at most ℓ attention layers, then we obtain AHAT[≤ ℓ]. Moreover, the restriction to all
languages accepted by an AHAT without positional encoding is denoted as NoPE-AHAT. The classes
NoPE-AHAT[U], NoPE-AHAT[UT], NoPE-AHAT[≤ ℓ] are then defined similarly to AHAT[U], etc.

Other language classes Let RE denote the class of recursively enumerable languages [38], i.e. those
recognized by (not necessarily terminating) Turing machines. TC0 denotes the class of all languages
defined by a family of polynomially sized circuits of constant depth containing only Boolean and
majority gates (see [43] for more details). For an alphabet Σ with Σ = {a1, . . . , am}, we define the
Parikh map as the function Ψ: Σ∗ → Nm, where Ψ(w)[i] := |w|ai is the number of ai’s in w. A
language L ⊆ Σ∗ is permutation-invariant if for u, v ∈ Σ∗ with Ψ(u) = Ψ(v), we have u ∈ L if
and only if v ∈ L. These have also been called “permutation-closed” or “proportion-invariant” e.g. in
[33]. By PI, we denote the class of languages that are permutation-invariant. In particular, RE ∩ PI is
the class of languages that are (i) recursively enumerable and (ii) permutation-invariant.

For a class C of languages, we denote by Proj(C) the class of projections, i.e. the languages of the
form π(L), where L is from C and π is a map that deletes a subset of the letters.

Presburger arithmetic (PA) refers to the first-order theory of the structure ⟨N; +, 0, 1, <⟩ [7, 16]. The
quantifier-free fragment of PA includes all PA formulas that do not contain any quantifiers; in other
words, these are Boolean combinations of atomic formulas. We assume that all atomic formulas are of
the form c1x1+ · · ·+ cnxn ≤ b with ci, b ∈ Q, which we refer to as linear inequalities. Additionally,
we use common abbreviations such ans = or >. Given a PA formula with m free variables, meaning
variables not bound by any quantifier, we denote by JφK the set of vectors in Nm that satisfy φ. Let
QFPA denote the class of languages L ⊆ Σ+ for which there exists a quantifier-free PA formula φ
with |Σ| free variables such that L = {w ∈ Σ+ | Ψ(w) ∈ JφK}.

4

3 Summary of results

In this section, we provide a rather detailed summary of our results, which would serve as a roadmap
for the rest of the paper. In particular, we specify results and defer proof sketches to Sections 4 to 6.

The power of NoPE-AHAT A subset S ⊆ Nm is semi-algebraic if it is a Boolean combination of
sets of the form Sp = {x ∈ Nm | p(x) > 0} for some polynomial p ∈ Z[X1, . . . , Xm]. A language
L ⊆ Σ∗ is semi-algebraic if there is a semi-algebraic set S ⊆ Nm and Σ = {a1, . . . , am} such that
L = {w ∈ {a1, . . . , am}∗ | Ψ(w) ∈ S}. Let SemiAlg denote the class of semi-algebraic languages.
An example is the set SQRT as defined in (1), since |w|a < |w|/

√
2 if and only if 2|w|2a < |w|2.

Our first, and arguably most important, main result is the following.
Theorem 1. NoPE-AHAT = NoPE-AHAT[U] = SemiAlg.

Note that for every p ∈ Z[X1, . . . , Xm], the set {x ∈ Nm | p(x) = 0} is semi-algebraic, because
p(x) = 0 if and only if −p(x)2 + 1 > 0. Thus, Theorem 1 implies that every solution set to
polynomial equations belongs to NoPE-AHAT.

Let us see some consequences of Theorem 1. We begin with positive results, i.e. examples of
languages that can be recognized by NoPE-AHAT. First, Theorem 1 implies that NoPE-AHAT are
almost Turing-complete: Up to projections, they can recognize all permutation-invariant recursively
enumerable languages. More precisely, we will deduce that Proj(NoPE-AHAT) = RE ∩ PI. The
latter implies that NoPE-AHAT itself goes beyond extremely powerful formalisms in the literature
on automata theory, verification, and neural networks: There is a language in NoPE-AHAT that is
not recognized by a higher-order recursion scheme, a Petri net, a simplified counter machine, nor
an LTL[Count] formula. This will be formalized in Corollary 4 (which is even stronger). Moreover,
the equation Proj(NoPE-AHAT) = RE ∩ PI implies that the emptiness problem for NoPE-AHAT is
undecidable. Again, we will later have a stronger statement in Corollary 5.

We can also use Theorem 1 to show that a language that is well-known not to be accepted by a UHAT,
is also not accepted by a NoPE AHAT. Let PARITY = {w ∈ {a, b}+ | |w|a is even}.
Corollary 2. PARITY does not belong to NoPE-AHAT.

PARITY is known to be accepted by an AHAT with PE [2]. Thus surprisingly, PEs increase the
power of AHAT, even among languages that are permutation-invariant.

NoPE-AHAT with two attention layers The AHAT we construct in for Theorem 1, and thus for
the equality Proj(NoPE-AHAT) = RE ∩ PI, employ several attention layers. We will show that for
the latter “almost Turing-completeness”, just two attention layers suffice:
Theorem 3. Proj(NoPE-AHAT[≤ 2]) = RE ∩ PI.

From Theorem 3, we can deduce that already with two attention layers, NoPE-AHAT go beyond very
powerful models from automata theory, verification, and neural networks:
Corollary 4. There is a language in NoPE-AHAT[≤ 2] that is not recognized by (i) higher-order
recursion schemes, (ii) Petri nets, (iii) simplified multi-counter machines, (iv) LTL[Count].

Here, higher-order recursion schemes (HORS) are a prominent model for programs with higher-order
recursion. HORS are the central model in the area of higher-order model checking [31]. Moreover,
Petri nets (also known as VAS) are a widely used and studied model of concurrent programs [12]. The
two models are some of the most powerful models (short of Turing-complete and thus undecidable
ones) in the overall area of automata theory; moreover, they are expressively incomparable. Their
accepted languages are defined in, e.g. [31] for HORS and, e.g. in [9, 23] for Petri nets.

Corollary 4 also compares NoPE-AHAT with simplified multi-counter machines (SMCM) [44]
and LTL[Count]. SMCM have been studied in the literature on neural networks [30, 44]. Roughly
speaking, SMCM are multi-counter machines where counter updates depend only on the current input
letter; see Appendix A.1 for details. Moreover, LTL[Count] is a variant of the logic LTL[C,+] of
[2]. LTL[C,+] is a powerful logic introduced in [2] to showcase the expressiveness of AHAT: Every
language definable in LTL[C,+] is accepted by an AHAT [2, Thm. 2]. In our variant LTL[Count], we
remove the feature of arbitrary unary predicates, which can be captured by AHAT thanks to PE. In

5

the absence of PE, there is no hope to capture these; hence our comparison against LTL[Count]. See
Appendix A.2 for a detailed definition of LTL[Count].

Corollary 4 follows from Theorem 3 with two arguments. First, the languages of higher-order
recursion schemes and of Petri nets are closed under projections (e.g. [8]; for Petri nets, this is
immediate from the definition) and each of them has a decidable membership problem [26, 31]. But
Theorem 3 tells us that there is a language K in NoPE-AHAT[≤ 2] and a projection π such that π(K)
has an undecidable membership problem. This implies that K can not be recognized by a HORS
nor by a Petri net. For SMCM and LTL[Count], we have to argue differently, because they are not
closed under projection. However, we prove in Appendix A.1 (for SMCM) and in Appendix A.2 (for
LTL[Count]) that permutation-invariant languages in these two classes must have semilinear Parikh
images. Since π(K) is permutation-invariant and undecidable and thus not semilinear, K cannot be
semilinear either. Hence, K is not recognized by an SMCM nor by LTL[Count].

Moreover, Theorem 3 implies that emptiness is undecidable, already with two attention layers:

Corollary 5. The emptiness problem for NoPE-AHAT[≤ 2] is undecidable.

NoPE-AHAT with one attention layer We have seen that NoPE AHAT are extremely powerful
already with two attention layers. The same is not true for a single attention layer. Indeed, we have a
characterization of NoPE AHAT with one layer in terms of Presburger arithmetic:

Theorem 6. NoPE-AHAT[≤ 1] = QFPA.

For example, this implies that with just one attention layer NoPE-AHAT are strictly less powerful
than with two: Proj(NoPE-AHAT[≤ 2]) contains all permutation-invariant recursively enumerable
languages, whereas Proj(NoPE-AHAT[≤ 1]) = Proj(QFPA) is the class of languages with semi-
linear Parikh images. Since not every recursively enumerable set of vectors is semilinear, the two
classes NoPE-AHAT[≤ 1] and NoPE-AHAT[≤ 2] must differ.

Moreover, the translation between NoPE-AHAT[≤ 1] and QFPA can be done algorithmically. Since
satisfiability of existential Presburger is decidable [16], we obtain:

Corollary 7. The emptiness problem for NoPE-AHAT[≤ 1] is decidable.

NoPE-AHAT without end marker Given that our definition of NoPE-AHAT¬em uses an end
marker, we also investigated the setting of NoPE-AHAT without end marker. Our results are given
in Appendix D. For example, we reveal a surprising connection to an open problem in number
theory: While emptiness is undecidable for NoPE-AHAT (Corollary 5), decidability of emptiness
for NoPE-AHAT¬em is equivalent to decidability of solvability of Diophantine equations over the
rationals. Whether decidability holds here is a major open problem in number theory [37]. More-
over, without an end marker, NoPE-AHAT still go beyond LTL[Count] and simplified multicounter
machines, already with two layers. See Appendix D for a list of results.

Counting beyond AHAT We conclude by showing the existence of a permutation-invariant lan-
guage that lies beyond AHAT, even in the presence of PEs.

Theorem 8. There is a permutation-invariant language that cannot be captured by AHAT, even with
PEs. Hence, AHAT ⊊ TC0.

See Section 6 for a proof. The “Hence” part of the theorem is a consequence of a standard result in
circuit complexity that each permutation-invariant language is in TC0; for completeness, we provide
a simple argument in Appendix A.3.

4 Characterizing the power of NoPE-AHAT

In this section, we give details on the proofs of Theorems 1 and 20 and Corollary 2. We begin with
Theorem 1. Since the inclusion NoPE-AHAT[U] ⊆ NoPE-AHAT is trivial, there are two interesting
inclusions: NoPE-AHAT ⊆ SemiAlg and SemiAlg ⊆ NoPE-AHAT[U]. The latter follows from:

Proposition 9. For every polynomial p ∈ Z[X1, . . . , Xm], the language Lp>0 = {w ∈
{a1, . . . , am}∗ | p(Ψ(w)) > 0} belongs to NoPE-AHAT[U].

6

Let us see why Proposition 9 implies SemiAlg ⊆ NoPE-AHAT[U]. First, the complement of each
language Lp>0 can be obtained, because p(x) > 0 is violated if and only if−p(x)+1 > 0. Moreover,
NoPE-AHAT is closed under union and intersection (see Appendix B.1). We can thus accept all
Boolean combinations of languages of the form Lp>0, and hence SemiAlg.

To show Proposition 9, we will use polynomials that are homogeneous, meaning all monomials have
the same degree. Note that given an arbitrary polynomial p ∈ Z[X1, . . . , Xm] of degree d, we can
consider the polynomial q ∈ Z[X0, . . . , Xm] with q = Xd

0p(
X1

X0
, . . . , Xm

X0
), which is homogeneous.

It has the property that p(x1, . . . , xm) > 0 if and only if q(1, x1, . . . , xm) > 0. Therefore, from now
on, we assume that we have a homogeneous polynomial q ∈ Z[X0, . . . , Xm] and want to construct
an AHAT for the language Kq = {w ∈ {a1, . . . , am}∗ | q(1,x) > 0 for x = Ψ(w)}.
To simplify notation, we denote the end marker by a0. Thus, the input will be a string w ∈
{a0, . . . , am}+ that contains a0 exactly once, at the end. Since |w|a0 = 1 is satisfied automatically,
our AHAT only has to check that q(x0, . . . , xm) > 0, where xi = |w|ai . The input encoding is the
map {a0, . . . , am}∗ → Qm with ai 7→ ei, where ei ∈ Qm is the i-th unit vector.

Step I: Compute frequencies Our AHAT first uses an attention layer to compute m + 1 new
components, where i-th component holds xi

n+1 , where n+ 1 is the length of the input (including the
end marker). This is easily done by attending to all positions and computing the averages of the first
m+ 1 components. To simplify notation, we will index vectors starting with index 0.

Step II: Multiplication gadgets Second, we have a sequence of gadgets (each consisting of two
layers). Each gadget introduces a new component, and does not change the existing components.
Between gadget executions, the following additional invariants are upheld: (i) Overall, a gadget does
not change existing components: it introduces one new component. (ii) The components {0, . . . ,m}
are called the initial components. (iii) All other components are uniform, i.e. they are the same across
all positions. (iv) The uniform components carry values in [0, 1]. Thus, we will call components
0, . . . ,m the initial components; and we call components > m the uniform components.

Our gadgets do the following. Suppose we have already produced ℓ additional components. For each
initial component i ∈ [0,m] and uniform component j ∈ [m+ 1,m+ 1 + ℓ], gadget omult(ℓ, i, j),
which introduces a new component, will carry the value xi·yj

n+1 , where yj is the value in component j
of all vectors. Recall that we use xi to denote the number of ai occurrences in the input for i ∈ [0,m].

We implement the gadget omult(ℓ, i, j) using some ReLU layers and an attention layer. Suppose that
before, we have the vector up ∈ Qm+1+ℓ in position p. First, using ReLU layers, we introduce a new
component that in position p has the value up[i] · up[j]. This can be achieved since up[i] is in {0, 1}
and up[j] ∈ [0, 1]: Notice that up[i] · up[j] = ReLU(up[j] − (1 − up[i])). Indeed, if up[i] = 1,
then this evaluates to up[j]; if up[i] = 0, then we get ReLU(up[j]− 1) = 0. We then use uniform
attention to compute the average of this new up[i] · up[j]-component across all vectors. Since there
are n+ 1 vectors, exactly xi of them have up[i] = 1, and also up[j] = yj , we get the desired xi·yj

n+1 .

Step III: Computing the polynomial We now use our gadgets to compute the value of the polyno-
mial. For each monomial of q, sayXi1 · · ·Xid , we use d−1 gadgets to compute xi1 · · ·xid/(n+1)d:
The frequency computation in the beginning yields xi1/(n+ 1), and then we use gadgets to compute
xi1xi2/(n+1)2, xi1xi2xi3/(n+1)3, etc. until xi1 · · ·xid/(n+1)d. Finally, we use a ReLU layer to
multiply each monomial with a rational coefficient, and compute the sum of all the monomials. Thus,
we have computed q(x0, . . . , xm)/(n+ 1)d. We accept if and only if q(x0, . . . , xm)/(n+ 1)d > 0.
Note that this is the case if and only if q(x0, . . . , xm) > 0.

This completes Proposition 9 and thus SemiAlg ⊆ NoPE-AHAT[U]. It remains to show:
Proposition 10. NoPE-AHAT ⊆ SemiAlg.
Proof. Suppose that Σ = {a1, . . . , am} is our alphabet, a0 the end marker, and xi ∈ N the number
of occurrences of ai in the input. We say that a position p is an ai-position if the input holds ai at
position p. Notice that an AHAT without positional encoding cannot distinguish vectors that come
from the same input letter. This means, in any layer, any two ai-positions will hold the same vector.
Thus, the vector sequence on layer ℓ is described by rational vectors uℓ,0, . . . ,uℓ,m, where uℓ,i is
the vector at all the ai-positions on layer ℓ. Moreover, for each i, the set of positions maximizing an
attention score also either contains all ai-positions, or none of them. Therefore, if the AHAT has a

7

attention layers, there are at most ((2m+1)m+1)a = 2(m+1)2a possible ways to choose the positions
of maximal score: On each attention layer, and for each i ∈ [0,m], we select a subset of the m+ 1
letters. For each ReLU node and each i, there are two ways its expression ReLU(v) can be evaluated:
as 0 or as v. Thus, if there are r ReLU nodes, then there are 2r ways to evaluate all those nodes.

For each of these 2r+(m+1)2a choices, we construct a conjunction of polynomial inequalities that
verify that (i) this choice actually maximized scores, (ii) the resulting vector at the right-most position
in the last layer satisfies the accepting condition. This is easy to do by building, for each layer
ℓ and each i, expressions in x1, . . . , xm for the vectors uℓ,i, assuming our choice above. These
expressions have the form p(x1, . . . , xm)/q(x1, . . . , xm) (averaging can introduce denominators).
Here, once we have expressions for uℓ,i, we can use them to build expressions for uℓ+1,i by following
the definition of AHAT. Checking (i) and (ii) is then also easy, because inequalities involving
quotients p(x1, . . . , xm)/q(x1, . . . , xm) can be turned into polynomial inequalities by multiplying
with common denominators. Finally, we take a disjunction over all 2r+(m+1)a conjunctions.

Inexpressibility of PARITY Let us now show Corollary 2. By Theorem 1, it suffices to show
that PARITY is not semi-algebraic. Suppose it is. Then there is a disjunction of conjunctions of
polynomial inequalities that characterizes PARITY. The polynomials are over Z[X,Y], where X
is the variable for a’s and Y is the variable for b’s. By plugging in Y = 0, we conclude that the
set of even numbers is semi-algebraic. Hence, there is a disjunction

∨n
i=1

∧m
j=1 pi,j(X) > 0 of

conjunctions that is satisfied exactly for the even numbers. This implies that for some i, there are
infinitely many even numbers k such that

∧m
j=1 pi,j(k) > 0. Therefore, for every j ∈ [1,m], the

leading coefficient of pi,j must be positive. But then,
∧m

j=1 pi,j(k) > 0 must hold for all sufficiently
large k, not just the even ones, a contradiction.

As mentioned in Section 3, we can deduce many more results from Theorem 1. Since we also prove
stronger versions for NoPE-AHAT with at most two layers, we defer the proofs to Section 5.

5 Parametric analysis

Capturing RE with two layers We sketch the proof of Theorem 3 (details in Appendix C.1).
The first ingredient is that by the MRDP theorem one Diophantine sets, every language in RE ∩ PI
is a projection of a language of the form Lp = {w ∈ {a1, . . . , am}∗ | p(Ψ(w)) = 0}, where
p ∈ Z[X1, . . . , Xm] is a polynomial [25]. Thus, it suffices to place Lp in NoPE-AHAT[≤ 2]. First
observe that in Theorem 1, we use one attention layer for each multiplication, so this avenue is
closed if we want to stay within two attention layers. Instead, we use that for every polynomial p ∈
Z[X1, . . . , Xm], there are quadratic (i.e. degree ≤ 2) polynomials q1, . . . , qr ∈ Z[X1, . . . , Xm+k]
for some r, k ≥ 0 such that for x ∈ Nm, we have p(x) = 0 if and only if there is some y ∈ Nk

with q1(x,y) = 0, . . . , qr(x,y) = 0: Just introduce a fresh variable for each multiplication in p and
use the qi to assign these fresh variables. Now as before, the first attention layer computes letter
frequencies. Then, the score function (which, as a bilinear map, can evaluate quadratic polynomials)
in the second attention layer evaluates the quadratic polynomials qi.

NoPE AHAT with a single layer Let us briefly sketch the proof of Theorem 6. For the inclusion
NoPE-AHAT[≤ 1] ⊆ QFPA, we proceed similarly to Proposition 10, while observing that the
inequalities we have to verify are all linear inequalities: This is because a single attention layer
averages only once. Conversely, for the inclusion QFPA ⊆ NoPE-AHAT[≤ 1], we use one attention
layer to compute all letter frequencies, and then use ReLU layers to evaluate linear inequalities. The
full proof of Theorem 6 can be found in Appendix C.2.

6 Beyond AHAT

We provide here a proof of Theorem 8, which consequently separates AHAT and TC0. We do not
give an explicit construction for this separating language, but rather a “counting” argument. More
specifically, by C-bounded AHATs we mean AHATs where the embedding dimension and the number
of layers do not exceed C. First, we establish the following lemma:

8

Lemma 11. Let C > 0 and the size of the input alphabet Σ be fixed. Then for any n, and for any
k inputs x1, . . . , xk ∈ Σn the number of Boolean functions that can be computed by C-bounded
AHATs on {x1, . . . , xk} is at most kO(n3).

To derive the theorem from this lemma, observe the following. For |Σ| = 5, and for any n, there exist
k = Θ(n4) inputs from Σn that cannot be obtained from each other by permuting letters. Hence,
permutation-invariant languages realize all 2Ω(n4) Boolean functions on these inputs. On the other
hand, when C is fixed, C-bounded AHATs realize just 2O(n3 logn) different functions on these inputs.
Thus, for any C, we can take n large enough and define our permutation-invariant language on Σn in
such a way that no C-bounded AHAT computes the restriction of our language to inputs of length n.
Doing this for all C using larger and larger n finishes the proof.

It remains to prove the lemma. We will view C-bounded AHATs, restricted to inputs of length n,
as concept classes in the standard PAC-learning setting [15]: there are input vectors, consisting of
coordinates of input embeddings (there are O(n) coordinates); there are “parameters”, consisting of
coordinates of the positional encodings, elements of the attention matrices and weights of the neural
networks (again, there are O(n) of them); any assignment of parameters gives us a “concept” – a set
of input vectors, evaluated positively with these values of parameters.

Computations in AHAT on an input from Σn can be seen as a sequence of standard arithmetic
operations and comparisons with 0 (performed over parameters of our AHATs). Namely, if the values
at some level are already computed, we do the following. First, compute the value, the query, and
the key vectors for the new layer, and this computation is just a multiplication by elements of the
V,K, and Q-matrices of the corresponding layers. Thus, it takes O(n) operations. We then compute
n2 products of key and queries, giving n attention weights per position. For each position, we then
compute the set of maximal attention weights, which is doable with n comparisons per position. We
take averages (O(n) operations per positions) and apply fixed-size ReLU networks to each position
(O(1) operations per positions). Overall, the number of operations is O(n2) and parameters is O(n).

By Theorem 2.3 in [15], the VC dimension of the corresponding concept class is bounded by
O(n2) ·O(n) = O(n3). [VC dimension of a concept class is the maximal size of a set of inputs on
which all Boolean functions are realizable by this concept class.] By the Sauer-Shelah lemma [35],
the number of Boolean functions realizable on k different input vectors is kO(n3), as required.

7 Concluding Remarks

We have identified the expressive power of average hard attention transformers with no Positional
Encodings (PEs) with permutation-invariant languages representing integer points in semi-algebraic
sets, which in turn generalize integer solution sets of multivariate polynomials (a.k.a. Diophantine
equations). This result suggests the surprising expressivity of transformers, even in the absence of PEs.
Despite this expressivity, our characterization shows that PARITY is not expressible by hard attention
transformers with no PEs (but is expressible with PEs, e.g., see [2]). In addition, it also follows that
average hard attention transformers with no PEs can express languages that are far complex than
established models (including simplified counter automata, Petri nets, and higher-order recursion
schemes). In particular, it also implies undecidability of reasoning about languages of transformers
with no PEs, solving an open problem [34] on the verification of transformers. Using a recently proven
result [46] connecting average hard attention transformers with soft attention transformers with PEs
or temperature scaling, we show that the latter can capture solutions to Diophantine equations. Finally,
we complement these results by providing a permutation-invariant language that is not expressible by
AHAT even with PEs, thus solving an open problem [2] whether the inclusion AHAT ⊆ TC0 is strict.

Limitation, Related Work, and Future Work: Formal models of transformers (e.g. see [40])
employ some assumptions that might be rather unrealistic. The first pertains to unbounded precision,
which appears not only in positional encodings, but also in internal precision during computation. This
has hitherto played a crucial role in deriving expressivity results. Results on transformers prohibitting
PEs (e.g. [45] and our work) constitute the first step in addressing this modeling limitation. Secondly,
one should be mindful that average hard attention mechanism is an approximation of practical
transformers that is amenable to theoretical analysis, even though there is evidence [27] that they
serve as a good approximation. That said, by employing a recent result [46], our result also yields

9

expressivity of soft attention transformers. Thirdly, although our work focuses on NoPE-UHAT
(recognizing only permutation-invariant languages), positional ordering can be recovered by a mild
addition of positional masking (see [45]).

Recent results (e.g. [18]) suggest that expressivity results are only a first step towards understanding
trainability. In particular, sensitive languages (e.g. PARITY) are not easily trainable, even though
they might be expressible by AHAT. [Intuitively, PARITY is sensitive because changing one bit flips
membership of a given string. This is not the case for MAJ and SQRT.] This suggests the future
avenue of investigating trainable NoPE-AHAT languages, e.g., by employing sensitivity.

Finally, our work focuses on transformer encoders. It is known that transformer decoders which
use self-attention mechanisms (i.e. intermediate generation of tokens) are Turing-complete [33].
This has recently [28] been simplified to the case with no PEs but strict positional masking. Such
a result is not comparable to ours since, even with no PEs, decoders can generate some type of
positional encodings during intermediate computation. Despite this, that transformer encoders can
already capture solutions to Diophantine equations suggests the possibility of an alternative proof of
Turing-completeness of transformers with a simpler decoder model. This we leave for future work.

References
[1] Ajtai, M. (1983). Σ1

1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48.

[2] Barceló, P., Kozachinskiy, A., Lin, A. W., and Podolskii, V. V. (2024). Logical languages accepted
by transformer encoders with hard attention. In ICLR. OpenReview.net.

[3] Bhattamishra, S., Ahuja, K., and Goyal, N. (2020). On the ability and limitations of transformers
to recognize formal languages. In Webber, B., Cohn, T., He, Y., and Liu, Y., editors, Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pages 7096–7116. Association for Computational Linguistics.

[4] Bonaert, G., Dimitrov, D. I., Baader, M., and Vechev, M. (2021). Fast and precise certification
of transformers. In Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI 2021, pages 466–481. Association for
Computing Machinery.

[5] Brix, C., Bak, S., Johnson, T. T., and Wu, H. (2024). The fifth international verification of neural
networks competition (VNN-COMP 2024): Summary and results. CoRR, abs/2412.19985.

[6] Chiang, D. and Cholak, P. (2022). Overcoming a theoretical limitation of self-attention. In
Muresan, S., Nakov, P., and Villavicencio, A., editors, Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 7654–7664. Association for Computational Linguistics.

[7] Chistikov, D. (2024). An introduction to the theory of linear integer arithmetic (invited paper).
In Barman, S. and Lasota, S., editors, 44th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2024, December 16-18, 2024, Gandhina-
gar, Gujarat, India, volume 323 of LIPIcs, pages 1:1–1:36. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

[8] Clemente, L., Parys, P., Salvati, S., and Walukiewicz, I. (2016). The diagonal problem for
higher-order recursion schemes is decidable. In Grohe, M., Koskinen, E., and Shankar, N., editors,
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16,
New York, NY, USA, July 5-8, 2016, pages 96–105. ACM.

[9] Czerwinski, W., Hofman, P., and Zetzsche, G. (2018). Unboundedness problems for languages
of vector addition systems. In Chatzigiannakis, I., Kaklamanis, C., Marx, D., and Sannella, D.,
editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 119:1–119:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[10] Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wenliang, L. K., Catt, E., Cundy, C.,
Hutter, M., Legg, S., Veness, J., and Ortega, P. A. (2023). Neural networks and the chomsky
hierarchy. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

10

[11] Dong, X., Luu, A. T., Ji, R., and Liu, H. (2021). Towards robustness against natural language
word substitutions. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

[12] Esparza, J. (1996). Decidability and complexity of petri net problems—an introduction. In
Advanced course on Petri nets, pages 374–428. Springer.

[13] Furst, M., Saxe, J. B., and Sipser, M. (1984). Parity, circuits, and the polynomial-time hierarchy.
Mathematical systems theory, 17(1):13–27.

[14] Ginsburg, S. and Spanier, E. (1966). Semigroups, presburger formulas, and languages. Pacific
journal of Mathematics, 16(2):285–296.

[15] Goldberg, P. and Jerrum, M. (1993). Bounding the vapnik-chervonenkis dimension of con-
cept classes parameterized by real numbers. In Proceedings of the sixth annual conference on
Computational learning theory, pages 361–369.

[16] Haase, C. (2018). A survival guide to presburger arithmetic. ACM SIGLOG News, 5(3):67–82.

[17] Hahn, M. (2020). Theoretical limitations of self-attention in neural sequence models. Trans.
Assoc. Comput. Linguistics, 8:156–171.

[18] Hahn, M. and Rofin, M. (2024). Why are sensitive functions hard for transformers? In Ku, L.,
Martins, A., and Srikumar, V., editors, Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pages 14973–15008. Association for Computational Linguistics.

[19] Hao, Y., Angluin, D., and Frank, R. (2022). Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. Trans. Assoc. Comput. Linguistics, 10:800–
810.

[20] Hsieh, Y., Cheng, M., Juan, D., Wei, W., Hsu, W., and Hsieh, C. (2019). On the robustness of
self-attentive models. In Korhonen, A., Traum, D. R., and Màrquez, L., editors, Proceedings of the
57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 1520–1529. Association for Computational
Linguistics.

[21] Huang, X., Ruan, W., Huang, W., Jin, G., Dong, Y., Wu, C., Bensalem, S., Mu, R., Qi, Y., Zhao,
X., Cai, K., Zhang, Y., Wu, S., Xu, P., Wu, D., Freitas, A., and Mustafa, M. A. (2023). A survey of
safety and trustworthiness of large language models through the lens of verification and validation.
CoRR, abs/2305.11391.

[22] Ibarra, O. H. (1978). Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM (JACM), 25(1):116–133.

[23] Keskin, E. and Meyer, R. (2024). On the separability problem of VASS reachability languages.
In Sobocinski, P., Lago, U. D., and Esparza, J., editors, Proceedings of the 39th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia, July 8-11, 2024, pages
49:1–49:14. ACM.

[24] Marques-Silva, J. and Ignatiev, A. (2022). Delivering trustworthy AI through formal XAI. In
Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022, pages 12342–12350. AAAI Press.

[25] Matiyasevich, Y. V. (1993). Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts.

[26] Mayr, E. W. (1981). An algorithm for the general petri net reachability problem. In Proceedings
of the thirteenth annual ACM symposium on Theory of computing, pages 238–246.

11

[27] Merrill, W., Ramanujan, V., Goldberg, Y., Schwartz, R., and Smith, N. A. (2021). Effects of
parameter norm growth during transformer training: Inductive bias from gradient descent. In
Moens, M., Huang, X., Specia, L., and Yih, S. W., editors, Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages 1766–1781. Association for Computational
Linguistics.

[28] Merrill, W. and Sabharwal, A. (2024). The expressive power of transformers with chain of
thought. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

[29] Merrill, W., Sabharwal, A., and Smith, N. A. (2022). Saturated transformers are constant-depth
threshold circuits. Trans. Assoc. Comput. Linguistics, 10:843–856.

[30] Merrill, W., Weiss, G., Goldberg, Y., Schwartz, R., Smith, N. A., and Yahav, E. (2020). A
formal hierarchy of RNN architectures. In Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J. R.,
editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 443–459. Association for Computational Linguistics.

[31] Ong, L. (2015). Higher-order model checking: An overview. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 1–15.
IEEE Computer Society.

[32] Parikh, R. (1966). On context-free languages. J. ACM, 13(4):570–581.

[33] Pérez, J., Barceló, P., and Marinkovic, J. (2021). Attention is turing-complete. J. Mach. Learn.
Res., 22:75:1–75:35.

[34] Sälzer, M., Alsmann, E., and Lange, M. (2025). Transformer encoder satisfiability: Complex-
ity and impact on formal reasoning. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net.

[35] Sauer, N. (1972). On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147.

[36] Shi, Z., Zhang, H., Chang, K., Huang, M., and Hsieh, C. (2020). Robustness verification for
transformers. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

[37] Shlapentokh, A. (2006). Hilbert’s Tenth Problem: Diophantine Classes and Extensions to
Global Fields. New Mathematical Monographs. Cambridge University Press.

[38] Sipser, M. (2013). Introduction to the Theory of Computation. Course Technology, Boston,
MA, third edition.

[39] Strobl, L., Angluin, D., Chiang, D., Rawski, J., and Sabharwal, A. (2025). Transformers as
transducers. Transactions of the Association for Computational Linguistics, 13:200–219.

[40] Strobl, L., Merrill, W., Weiss, G., Chiang, D., and Angluin, D. (2024). What formal languages
can transformers express? A survey. Trans. Assoc. Comput. Linguistics, 12:543–561.

[41] van Lint, J. H. and Wilson, R. M. (2001). A Course in Combinatorics. Cambridge University
Press.

[42] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008.

[43] Vollmer, H. (1999). Introduction to Circuit Complexity. Springer.

12

[44] Weiss, G., Goldberg, Y., and Yahav, E. (2018). On the practical computational power of finite
precision rnns for language recognition. In Gurevych, I. and Miyao, Y., editors, Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 2: Short Papers, pages 740–745. Association for
Computational Linguistics.

[45] Yang, A., Chiang, D., and Angluin, D. (2024a). Masked hard-attention transformers recognize
exactly the star-free languages. In Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet,
U., Tomczak, J., and Zhang, C., editors, Advances in Neural Information Processing Systems,
volume 37, pages 10202–10235. Curran Associates, Inc.

[46] Yang, A., Strobl, L., Chiang, D., and Angluin, D. (2024b). Simulating hard attention using soft
attention. CoRR, abs/2412.09925.

A Omitted proofs from Section 3

A.1 Permutation-invariant languages of simplified multicounter machines

Simplified multicounter machines were first introduced by [44] as a non Turing complete version
of Minsky machines that still allow incrementing, decrementing, and (non-)zero tests of multiple
counters. Before defining these machines, we first need some more notations: the masking function
mask: Zd → {0, 1}d satisfies for each tuple x ∈ Zd

for all 1 ≤ i ≤ d : mask(x)[i] = 0 ⇐⇒ x[i] = 0 .

Simplified multicounter machines can apply the following operations: incrementing (+1), decrement-
ing (−1), resets (· 0), and no-operations (· 1). A vector o ∈ {+1,−1, · 0, · 1}d of operations induces
the following function o : Zd → Zd with: for each x ∈ Zd and 1 ≤ i ≤ n:

• if o[i] = + 1 then o(x)[i] = x[i] + 1,

• if o[i] = − 1 then o(x)[i] = x[i]− 1,

• if o[i] = · 0 then o(x)[i] = 0, and

• if o[i] = · 1 then o(x)[i] = x[i].

A d-dimensional simplified multicounter machine is a tuple M = (Q,Σ, q0, δ, u, F) where Q is a
finite set of states, Σ is the input alphabet, q0 ∈ Q is the initial state, δ : Q × Σ × {0, 1}d → Q a
transition function, u : Σ → {−1,+1, · 0, · 1}d a counter update function, and F ⊆ Q × {0, 1}d
a set of masked accepting configurations. The set of configurations of M is the set Q × Zd. For
two configurations (p,x), (q,y) ∈ Q × Zd and a letter a ∈ Σ we write (p,x)

a−→M (q,y) if
q = δ(p, a,mask(x)), and y = u(a)(x). For a word w ∈ Σ∗ and configurations c, d ∈ Q× Zd we
also write c w−→M d if there are a1, a2, . . . , aℓ ∈ Σ and configurations c0, c1, . . . , cℓ ∈ Q× Zd with
w = a1a2 · · · aℓ, c0 = c, cℓ = d, and ci−1

ai−→M ci for all 1 ≤ i ≤ ℓ. A word w ∈ Σ∗ is accepted by
M iff there is a configuration (q,x) ∈ Q× Zd with (q0,0)

w−→M (q,x) with (q,mask(x)) ∈ F . By
L(M) we denote the set of all accepted words of M.

Lemma 12. If L ⊆ Σ∗ is permutation-invariant and accepted by a simplified multicounter machine.
Then the Parikh image of L is semilinear.

Proof sketch. Suppose Σ = {a1, . . . , am}. Note that since L is permutation closed, it has the same
Parikh image as K = L ∩ a∗1 · · · a∗m. Moreover, K is also accepted by some simplified multicounter
machine: Checking that the input belongs to a∗1 · · · a∗m can be done in the state. Now note that in
a simplified multicounter machine, since every counter update depends only on the input letter, a
simplified multicounter machine for the language K is necessarily reversal-bounded: This means,
over the course of the run, each counter switches between incrementing, decrementing and zero-
testing at most m − 1 times. However, it is a well-known result in automata theory that counter
machines with reversal-bounded counters have semilinear Parikh images [22, Theorem 2.3].

13

We would like to stress that the assumption of being permutation-invariant is crucial in Lemma 12 is
crucial: Without it, simplified multi-counter machines can accept non-semilinear languages.

For example, take the language

L := {an((bc)n(de)n)mfn | n,m ∈ N,m, n ≥ 2}.

Then L is accepted by a simplified multi-counter machine: It counts up its first counter while reading
a’s and thus stores n in it. Upon reading b, it decrements the first counter, and c increments the
second counter. Thus, after reading (bc)n, the first counter is empty and the second counter holds n.
Then, d decrements the second counter, and e increments the first. Thus, after reading (de)n, we are
back at holding n in the first counter (and the second being empty). Finally, f just decrements the
first counter.

However, the language L does not have a semilinear Parikh image: Projecting away the components
of the letters a, f yields the set of vectors

S = {(b, c, d, e) ∈ N4 | ∃m,n ∈ N : m,n ≥ 2, b = c = d = e = 4mn},

where b, c, d, e are the entries corresponding to b, c, d, e, resp. However, S is not semilinear: If we
project to one of the components, we obtain the set {4mn | m,n ≥ 2}. If the latter were definable
in Presburger arithmetic, then so would {mn | m,n ≥ 2}, but this is the set of composite numbers,
which cannot be semilinear.

Thus, we observe:
Proposition 13. There is a simplified multi-counter machine that accepts a non-semilinear language.

A.2 Permutation-invariant languages of LTL with counting

LTL[Count] has the following syntax:

ϕ ::= a | t ≤ t | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

t ::= k | k ·
←−
#ϕ | k ·

−→
#ϕ | t+ t

where a ∈ Σ and k ∈ Z. Next we define the semantics of LTL[Count]. For any word w =
a1a2 · · · aℓ ∈ Σ∗ with a1, a2, . . . , aℓ ∈ Σ, for each 1 ≤ i ≤ ℓ, and each formula ϕ ∈ LTL[Count]
we write w, i |= ϕ if the formula ϕ is satisfied in w at position i. Formally, this relation is defined
inductively as follows:

• w, i |= a (for a ∈ Σ) iff ai = a,
• w, i |= ¬ϕ iff w, i ̸|= ϕ,
• w, i |= ϕ ∨ ψ iff w, i |= ϕ or w, i |= ψ,
• w, i |= Xϕ iff i < ℓ and w, i+ 1 |= ϕ,
• w, i |= ϕUψ iff there is i ≤ j ≤ k with w, j |= ψ and for all i ≤ k < j we have w, k |= ϕ,
• w, i |= t1 ≤ t2 iff Jt1K(w, i) ≤ Jt2K(w, i) where the semantics JtK : Σ∗ × N → Z of

a term t is defined as follows: JkK(w, i) = k, Jt1 + t2K(w, i) = Jt1K(w, i) + Jt2K(w, i),
Jk ·
←−
#ϕK = k · |{1 ≤ j < i | w, j |= ϕ}|, and Jk ·

−→
#ϕK = k · |{i ≤ j ≤ ℓ | w, j |= ϕ}|.

Our main result on LTL[Count] is the following:
Theorem 14. Every permutation-invariant language definable in LTL[Count] has a semilinear Parikh
image.

Before we can prove Theorem 14, we need a few more definitions. For an alphabet Σ write Σε for
the set Σ ∪ {ε}. A (d-dimensional) Parikh automaton is a tuple A = (Q,Σ, ι,∆, (Cq)q∈Q) where
Q is a finite set of states, Σ is the input alphabet, ι ∈ Q is an initial state, ∆ ⊆ Q× Σε × Nd ×Q
is a finite transition relation, and Cq ⊆ Nd are semilinear target sets. A word w ∈ Σ∗ is accepted
by A if there are a1, a2, . . . , aℓ ∈ Σε, states q0, q1, . . . , qℓ ∈ Q, and vectors v0,v1, . . . ,vℓ ∈ Nd

such that (i) q0 = ι and v0 = 0, (ii) for each 0 ≤ i < ℓ there is a transition (qi, ai,xi, qi+1) ∈ ∆
with vi+1 = vi + xi, and (iii) vℓ ∈ Cqℓ . The accepted language L(A) of A is the set of all words
accepted by A. It is a well-known fact that for each Parikh automaton A the accepted language L(A)

14

has a semilinear Parikh image. Observe that 0-dimensional Parikh automata are essentially NFA and,
hence, accept exactly the regular languages.

A Parikh transducer is a Parikh automaton with input alphabet Σε × Γε where Σ and Γ are two
alphabets. The accepted language L(A) ⊆ Σ∗ × Γ∗ of a Parikh transducer can also be seen as a
map: if (v, w) ∈ L(A) then we can see v as the input and w as the output of the transducer. Formally,
for an input language L ⊆ Σ∗ a Parikh transducer computes the output TA(L) = {w ∈ Γ∗ | ∃v ∈
L : (v, w) ∈ L(A)}. If L is accepted by a Parikh automaton then TA(L) is also accepted by a Parikh
automaton. To see this, we can take the synchronized product of the Parikh automaton B accepting
L and A (i.e., B reads the same letter from the input as A in its first component). Accordingly,
cascading of Parikh transducers is also possible, i.e., if A and B are Parikh transducers over Σε × Γε

and Γε ×Πε, we can also construct a Parikh transducer C over Σε ×Πε computing TC = TB ◦ TA.

With the definition of Parikh automata and Parikh transducers we are no able to prove Theorem 14.

Proof. Let ϕ ∈ LTL[Count] be a formula such that the described language L(ϕ) is permutation-
invariant. We will prove by induction on the structure of ϕ that the Parikh image of L(ϕ) (or
actually a bounded subset of L(ϕ)) is semilinear. Here, a language L ⊆ Σ∗ is bounded if there are
letters a1, a2, . . . , an ∈ Σ with L ⊆ a∗1a

∗
2 · · · a∗n. So, let a1, a2, . . . , an ∈ Σ be distinct letters with

Σ = {a1, a2, . . . , an}. Then L(ϕ) ∩ a∗1a∗2 · · · a∗n is clearly bounded and has the same Parikh image
as L(ϕ).

For each subformula ψ of ϕ we construct a Parikh transducer that labels each position satisfying
ψ. In the base case, we decorate each letter a by b ∈ {0, 1}n where b[i] = 1 iff ai = a. Note that
this transducer handles all atomic formulas a ∈ Σ at once. For ψ = χ1 ∨ χ2 we add the decoration
b ∈ {0, 1} to each letter where b = 1 iff one of the decorations corresponding to χ1 and χ2 is 1.
There are similar transducers (which do not introduce counters) for the cases ψ = ¬χ, ψ = Xχ, and
ψ = χ1 Uχ2. Note that applying these transducers to a bounded language always yields another
bounded language.

Now, consider a counting subformula, i.e. ψ =
∑ℓ1

i=1 ki ·
←−−
#χi +

∑ℓ2
i=ℓ1+1 ki ·

−−→
#χi ≤ k. Observe

that the set of positions satisfying ψ is convex in the set of positions satisfying any χi. This is true
since we consider only a bounded input language. Hence, we can split the input word into three
(possibly empty) intervals: (i) the positions at the beginning of the input that do not satisfy ψ, (ii)
the positions where all positions satisfying a χi also satisfy ψ, and (iii) the positions at the end of
the input that do not satisfy ψ. We describe in the following a Parikh transducer with 3 · ℓ2 many
counters - one for each of these three intervals and each formula χi. The transducer guesses the three
intervals (note that this is non-deterministic), counts positions satisfying a χi accordingly, decorates
only the positions in the second interval labeled with a χi with 1 (and everything else with a 0), and
validates in the end our choice of the intervals (via appropriate semilinear target sets ensuring that
the equation in ϕ is not satisfied in the first and third interval and is satisfied in the second interval).
Clearly, this all can be done in one (non-deterministic) Parikh transducer.

Finally, we have a cascade of (Parikh) transducers decorating each position in a bounded input word
with a Boolean value indicating whether ϕ holds in that position. If we use a∗1a

∗
2 · · · a∗n as input

language for our transducers (note that this language is regular) and intersect the output with all
words decorated with a 1 in the first position, we obtain a Parikh automaton accepting exactly the
language L(ϕ) ∩ a∗1a∗2 · · · a∗n. Since Parikh automata accept only languages with semilinear Parikh
image, we infer that L(ϕ) ∩ a∗1a∗2 · · · a∗n and, hence, L(ϕ) have a semilinear Parikh image.

A.3 Proof that each permutation-invariant language is in TC0

We assume that Σ = {a1, . . . , ak}. Using majority gates, one can turn a given string w into a
Parikh-equivalent word w′ ∈ a∗1 · · · a∗k, i.e., Ψ(w) = Ψ(w′). This essentially amounts to performing
counting using TC0 circuits (see Section 1.4.3 of [43]). Now, observe that there are at most poly(n)
many strings in a∗1 · · · a∗k of length n. Indeed, each such string corresponds to an ordered integer
partition of n into k parts, and there are precisely

(
n+k−1
k−1

)
= O(nk) many of them [41, Chapter 13].

Each such string can then be treated separately using AC0 circuits.

15

B Omitted proofs from Section 4

B.1 Closure under union and intersection

Lemma 15. NoPE-AHAT is closed under union and intersection.

Proof. Let TA, TB ∈ NoPE-AHAT, each with kA and kB layers, both operating over the same
alphabet Σ and employing the endmarker $. We outline the straightforward construction of TA∪B ,
which represents the union of the languages accepted by TA and TB .

Let ιA : Σ ∪ {$} → Qm denote the embedding of TA and ιB : Σ ∪ {$} → Qn represent the
embedding of TB . Then, TA∪B uses the embedding defined by ι(a) = ιA(a) ∥ ιB(a), where ∥ stands
for the concatenation of vectors, implying that ιA(a) is placed atop ιB(a). Subsequently, TA∪B

operates as follows: initially, it simulates TA on the first m dimensions of each vector ι(a) while
carrying the remaining n dimensions through. This is accomplished by employing the kA layers of
TA, where the query and key matrices are augmented with all-zero rows and columns in dimensions
exceeding m. The value matrices of TA are extended with identity rows and columns, and we exploit
the residual connections in the ReLU networks of an attention layer. Apart from these modifications,
TA remains unchanged. Thereafter, TA∪B simulates TB on the latter n dimensions using its kB
layers, adjusted similarly. Consequently, for all inputs w$, the vector y related to the endmarker $
produced in layer kA + kB before the ReLU network application is assumed to be given by yA ∥ yB ,
where yA is the corresponding vector produced by TA after layer kA but without application of ReLU
network NkA

and yB is the vector produced by TB after layer kB , but without application of ReLU
network NkB

. Finally, we use the ReLU network representing (NkA
)1 + (NkB

)1 in layer kA + kB ,
which denotes the sum of the first output dimensions of the final ReLU networks of TA and TB ,
respectively.

For the case of TA∩B , the NoPE-AHAT recognising the intersection of the languages accepted by
TA and TB , we employ the same construction. However, we use the final ReLU network computing
min((NkA

)1, (NkB
)1) as the overall output of TA∩B . Note that min(x, y) = y − max(0, y − x),

meaning it can be realised by ReLU networks.

C Omitted proofs from Section 5

C.1 Capturing recursively enumerable languages

In this subsection, we prove Theorem 3. The inclusions Proj(NoPE-AHAT[≤ 2]) ⊆
Proj(NoPE-AHAT) ⊆ RE ∩ PI are obvious: Given an NoPE-AHAT, one can clearly decide the
membership problem—just run the AHAT. Thus, the languages in NoPE-AHAT are decidable, and
hence their projections are recursively enumerable. They are also clearly permutation-invariant, hence
contained in RE ∩ PI. Thus, it remains to show the inclusion RE ∩ PI ⊆ Proj(NoPE-AHAT[≤ 2]).

Our proof relies on the fact that RE ∩ PI is precisely the set of projections of solution sets of
Diophantine equation systems. The following is a direct consequence of the “MRDP theorem” (also
known as the undecidability of integer Diophantine equations) due to Matiyasevich, Robinson, Davis,
and Putnam [25]:

Theorem 16. Let Σ = {a1, . . . , am}. A language L ⊆ Σ∗ belongs to RE ∩ PI if and only if there is
a k ∈ N and a polynomial p ∈ Z[X1, . . . , Xm+k] such that L = πa1,...,am(K), where

K = {w ∈ {a1, . . . , am+k}∗ | p(Ψ(w)) = 0}.

Because of this, it suffices to show that every language K as in Theorem 16 belongs to
Proj(NoPE-AHAT[≤ 2]): Indeed, if K belongs to Proj(NoPE-AHAT[≤ 2]), then L belongs to
Proj(NoPE-AHAT[≤ 2]).

Systems of quadratic inequalities The first step in our construction is to observe every languageK
as in Theorem 16 can also be defined by quadratic inequalities, if we allow several of them. Formally,
a simple quadratic polynomial is a polynomial of the form aWX + bY + cZ + d, where W,X, Y, Z
are pairwise distinct variables, and a, b, c, d ∈ Z.

16

Lemma 17. For every polynomial p ∈ Z[X1, . . . , Xm], there are k, t ∈ N and simple quadratic
polynomials q1, . . . , qm ∈ Z[X1, . . . , Xm+k] such that for every x ∈ Nm, we have p(x) = 0 if and
only if there is a y ∈ Nk with qi(x,y) < 0 for every i ∈ [1, t].

Proof. First, observe that it suffices to prove the lemma to reduce to equations, i.e. “qi(x,y) =
0”, because such an equation can be turned into inequalities by requiring qi(x,y) − 1 < 0 and
−qi(x,y)− 1 < 0.

Given the polynomial p ∈ Z[X1, . . . , Xm], we write p = M1 + · · · + Mr with monomials
M1, . . . ,Mr. We introduce variables Y0, Y1, . . . , Yr, Z0, . . . , Zr and equations Y0 = 1, Z0 = 0, and
Mi = Yi and Zi = Zi−1 + Y0Yi for i ∈ [1, r], and Zr = 0. Thus, we now have a set of equations
that are either already simple quadratic, or of the form Y =M , where M is a monomial.

To express Y =M for a monomial M , suppose the monomial M is M = aZ1 · · ·Zr for variables
Z1, . . . , Zr, and a ∈ Z. Then, we introduce variables Y1, . . . , Yr and equations Y0 = a, Yi = Yi−1Zi,
for i ∈ [1, r], and Y = Zr. Now, all equations are clearly of the form qi = 0, where qi is simple
quadratic.

Because of Lemma 17, it suffices to prove the following:

Proposition 18. Let q1, . . . , qt ∈ Z[X1, . . . , Xm] be simple quadratic polynomials. Then
the language M = {w ∈ {a1, . . . , am}∗ | qi(Ψ(w)) < 0 for each i ∈ [1, t]} belongs to
Proj(NoPE-AHAT[≤ 2]).

Suppose we are given t inqualities over the set X = {X1, . . . , Xm} of variables. Our input alphabet
is Σ = {a1, . . . , at, b1, . . . , bm}. Moreover, we have a special endmarker symbol $. Intuitively,
a vector x ∈ Nt is represented by an input word where ai occurs exactly x[i] times, and each bi
occurs exactly once. Intuitively, the role of the letters bi is that during the run of the transformer, the
(unique) occurrence of bi will evaluate the i-th inequality. Then clearly, a projection map that deletes
all occurrences of b1, . . . , bm will yield exactly the desired language M .

Each input leter is encoded into an (t+m+ 1)-dimensional vector, where ai 7→ ei, bi 7→ et+i, and
$ 7→ et+m+1. Here ej is the vector with 1 in coordinate j and 0 everywhere else.

Stage I: Computing frequencies using attention Given an input w$ = w1 · · ·wn+1,
w1, . . . , wn ∈ Σ, wn+1 = $, we denote n = |w|. Thus, each layer processes n + 1 vectors. Let
xi := |w|ai for each i ∈ [1,m]. In the beginning, we use an attention layer where each position com-
putes the average over all positions. In the average vector, we thus obtain |w|ai/(n+1) = xi/(n+1)
in component i; and |w|bi/(n+ 1) in component m+ i; and 1/(n+ 1) in component m+ t+ 1. In
each position, we keep this average vectors in new components.

After this, each vector has dimension (m+ t+ 1) + (m+ t+ 1). We write the vector at position
p ∈ [1, n + 1] as (up,f), where up is the original input vector, and f ∈ Qm+t+1 is the vector of
frequencies. Note that the frequency vector is the same at every position.

Stage II: Collecting factors Using ReLU layers, we expand every vector by additional m + 1
components. These new vectors vp ∈ Qm+1 hold the following:

1. In positions p with wp ∈ {a1, . . . , at, $}, we have vp = 0.

2. In positions p with wp = bi (equivalently, up[t+ i] = 1): If the i-th inequality is aXjXk +
bXℓ+cXh+d < 0, then we have vp[j] = axk/(n+1), vp[t+1] = (bxℓ+cxh+d)/(n+1);
all other components of vp are zero.

We achieve this with separate ReLU neural network for each i. Here, if the i-th inequality is
aXjXk + bXℓ + cXh + d < 0, then the i-th ReLU neural network will compute in position p the
vector wi,p with

wi,p[j] = up[t+ i] · axk
n+ 1

= up[t+ i] · af [k], (2)

wi,p[t+ 1] = up[t+ i] · bxℓ + cxh + d

n+ 1
= up[t+ i] · (bf [ℓ] + cf [h] + df [m+ t+ 1]), (3)

17

and wi,p is zero in all other components. Note that if we manage to compute each wi,p, then the
desired vectors vp can be obtained as w1,p + · · · +wm,p. Thus, it suffices to compute each wi,p

using a ReLU neural network. Here, the only difficulty is to compute the products up[r] · f [s] for
some indices r, s ∈ [0, t+m+ 1]. By exploiting that up[r] ∈ {0, 1} and f [s] ∈ [0, 1], this can be
done using ReLU applications, since then

up[r] · f [s] = ReLU(f [s]− (1− up[r])).

Indeed, if up[r] = 1, this expression evaluates to f [s]. And if up[r] = 0, then this expression
evaluates to ReLU(f [s]− 1) = 0.

Now each vector has dimension (m+ t+1)+(m+ t+1)+(m+1). We write the vector at position
p ∈ [1, n+ 1] as (up,f ,vp).

Stage III: Quadratic polynomials as scores We now use an attention layer where each quantity

axjxk + bxℓ + cxh + d

(n+ 1)2
,

for some inequality aXjXk + bXℓ + cXh + d < 0, is computed as a score. To this end, we use affine
key and query maps K,Q : Q2(m+t+1)+(m+1) → Qm+1 where

K(up,f ,vp) =
(

x1

n+1 , . . . ,
xn

n+1 ,
1

n+1

)
, Q(up,f ,vp) = vp.

Note that then for positions p, q ∈ [1, n+ 1], we have

1. If wq ∈ {a1, . . . , am, $}, then Q(uq,f ,vq) = vq = 0, and thus
⟨K(up,f ,vp), Q(uq,f ,vq)⟩ = 0.

2. If wq = bi, and the i-th inequality is aXjXk + bXℓ + cXh + d < 0, then we have

⟨K(up,f ,vp), Q(uq,f ,vq)⟩ =
〈(

x1

n+1 , . . . ,
xn

n+1 ,
1

n+1

)
,vq

〉
=

xj
n+ 1

· axk
n+ 1

+
1

n+ 1
· bxℓ + cxr + d

n+ 1
=
axjxk + bxℓ + cxh + d

(n+ 1)2
.

Thus, if the i-th inequality is violated, then an occurrence of bi will yield a score ≥ 0. If all
inequalities are satisfied, an occurrence of bi will yield a negative score.

Moreover, the value map V : Q2(m+t+1)+(m+1) → Q is defined so that

1. if wp ∈ {a1, . . . , am, $}, then V (up,f ,vp) = 0, and
2. if wp ∈ {b1, . . . , bt}, then V (up,f ,vp) = 1.

Thus, as soon as there is an occurrence of bi and the i-th inequality is violated, the value 1 participates
in the average, and thus the average becomes positive; even ≥ 1

n+1 . However, if all inequalities are
satisfied, then none of the positions with letters xi maximize the score, and thus the average value is
exactly 0.

We keep this average in a new component. Thus, all vectors are of the form (up,f ,vp, g), where
g ∈ Q is the computed average. Note that the average is the same in every position.

Stage IV: Check all conditions We now use ReLU layers to check all conditions. Note that our
input corresponds to a solution if and only if the following conditions are met:

1. g ≤ 0; which is the case iff g < 1
n+1 .

2. there is exactly one occurrence of each bi, i.e. fp[m+ i] = 1
n+1 .

Therefore, we compute using ReLU layers the quantity

y := 1
n+1 − g − |f [m+ 1]− 1

n+1 | − · · · − |f [m+ t]− 1
n+1 |.

Here, note that since |z| = ReLU(z) + ReLU(−z), we can compute absolute values. Moreover,
since $ occurs exactly once, we have 1

n+1 available, since f [m+ t+ 1] = 1
n+1 .

18

Now observe that if our input is a solution, then g = 0 and f [m+ i] = 1
n+1 or i ∈ [1, t], and thus

y′ = 1
n+1 . If our input is not a solution (or some letter bi occurs not exactly once), then at least one

of the terms g, |f [m+ i]− 1
n+1 | will be ≥ 1

n+1 , and thus y ≤ 0. Therefore, we have y′ > 0 if and
only if out input encodes a solution.

C.2 One layer NoPE-AHAT

Theorem 6. NoPE-AHAT[≤ 1] = QFPA.

Proof of Theorem 6. We begin by proving that NoPE-AHAT[≤ 1] ⊆ QFPA. Let T be an AHAT
with input embedding ι : Σ ∪ {$} → Qd, a single AHA layer λ utilising affine maps Q,K ∈ Qm×d,
V ∈ Qk×d, given as matrices, and the ReLU network N : Qd+k → Qe. Our goal is to construct a
quantifier-free PA formula φT with variables xi for i ∈ {1, . . . , |Σ|} such that Ψ−1(JφK) = {w ∈
Σ∗ | T accepts w$}. In the following, we assume Σ = {a1, . . . , am} and denote Σ ∪ {$} by Σ′.

First, we observe that for all words w ∈ Σ∗, the output of T given w$ is computed by

N

ι($), 1

|w$|ai1
+ · · ·+ |w$|aih

h∑
j=1

|w$|aij
V ι(aij)

 ,

where Γ = {ai1 , . . . , aih} ⊆ Σ′ is exactly the subset of symbols aij occurring in w$ that maximise
⟨Qι(aij),Kι($)⟩. We construct φT such that it mirrors exactly this computational structure. We
have φT =

∨
Γ⊆Σ′ φΓ, where

∨
ranges over those subsets Γ where ⟨Qι(aij),Kι($)⟩ is maximal for

precisely the aij ∈ Γ. The subformula φΓ is defined as follows. For now, we assume that $ /∈ Γ and
introduce some auxiliary formulas. Throughout the following construction steps, we assume that
atomic formulas are normalised to the form c1x1 + · · ·+ cnxn ≤ b.
Given the ReLU network N , it is straightforward to construct a quantifier-free PA formula φN

such that JφN K exactly includes those x1, . . . , xd+k ∈ Nd+k satisfying N (x1, . . . , xd+k)1 > 0,
where N (·)1 denotes the first output dimension of N . The key idea here is that the computation
of a single ReLU node v(x1, . . . , xd+k) = y, with weights ci and bias b of N , is described by the
quantifier-free PA formula: (c1x1+ · · ·+cd+kxd+k+b ≤ 0∧0 = y)∨(c1x1+ · · ·+cd+kxd+k+b >
0 ∧ c1x1 + · · · + cd+kxd+k + b = y). Then, by nesting this construction iteratively from the last
layer to the first layer of N , and finally replacing = y with > 0 in the atomic formulas related to the
first output dimension of N , we achieve the construction of φN . This nesting and replacement also
ensures that φN includes only the variables x1, . . . , xd+k.

Let Γ ⊆ Σ such that Γ = {ai1 , . . . , aih}. Consider the ReLU network N , the value matrix V ,
and the embedding ι. We construct a quantifier-free PA formula φN ,V

Γ such that JφN ,V
Γ K exactly

includes those (xi1 , . . . , xih) ∈ Nh satisfying N (ι($), 1
xi1

+···+xih

∑h
j=1 xijV ι(aij))1 > 0. To do

so, we adjust the formula φN as described in the following. To account for the fixed input ι($), we
replace each occurrence of x1 to xd in φN by the respective entry of ι($). Furthermore, to handle
the specific form of the input 1

xi1+···+xih

∑h
j=1 xijV ι(aij), we first replace each occurrence of xd+l

with l ∈ {1, . . . , k} in the already modified φN by:

(vl1ι(ai1)1 + · · ·+ vldι(ai1)d)xi1 + · · ·+ (vl1ι(aih)1 + · · ·+ vldι(aih)d)xih ,

where vlj are the respective entries of V . Lastly, we replace each atomic constraint c1xi1 + · · · +
chxih ≤ b in the adjusted formula with (c1 − b)xi1 + · · ·+ (ch − b)xih ≤ 0 to adjust for the factor

1
xi1

+···+xih
present in the input.

Now, we define φΓ as φN ,V,ι
Γ . If $ ∈ Γ, we adjust φN ,V,ι

Γ slightly. Assuming $ = aij ∈ Γ,
we replace the variable xij with the constant 1 in φN ,V,ι

Γ . Given this construction, it is clear that
Ψ−1(JφT K) = {w ∈ Σ+ | T accepts w$}, as φT mimics the computation of T for all possible
attention situations Γ.

Next, let φ be a quantifier-free PA with m variables x1 and k atomic subformulas cj1x1 + · · · +
cjmxm ≤ bj . We assume, without loss of generality, that all negations ¬ occur in front of atomic

19

subformulas. As before, but the other way, we construct AHAT Tφ with a single attention layer such
that Ψ−1(JφK) = {w ∈ {a1, . . . , am}∗ | Tφ accepts w$}. To ease notation, we write vectors as row
vectors in the following.

First, we observe the following: there is oφ ∈ Q with oφ > 0 such that for all atomic subformulas
ψ = cj1x1 + · · · + cjmxm ≤ bj of φ and all x ∈ Nm that do not satisfy ψ, the inequality
c1x1 + · · ·+ cmxm − bi ≥ oφ holds. This follows from the fact that all possible solutions are from
Nm and that there are only finitely many different atomic subformulas in φ. Now, the embedding
ι : Σ ∪ {$} → {0, 1}m+k+1 for Tφ is defined by ι(ai) = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is
located at the ith position, and ι($) = (0, . . . , 0, b1, . . . , bk, oφ). Both the query and key matrices, Q
and K, are zero matrices of dimension (m+ k + 1)× 1. Note that this configuration ensures that
⟨Qx′,Kx⟩ = 0 for all pairs of vectors x,x′. The value matrix V is simply the identity matrix of
dimensionality (m+k+1)×(m+k+1). Overall, this ensures that, given a wordw$ of length n, that
an, denoting the attention vector computed for $ is given by 1

n (|w|a1
, . . . , |w|am

, b1, . . . , bk, oφ).

Next, we construct the final FNN Nφ. The key idea is that Nφ, when given the input
(ι($), 1

n |w|a1
, . . . , 1

nbk,
1
noφ), satisfies Nφ(·)1 > 0 if and only if (|w|a1

, . . . , |w|am
) is a solution to

φ. Indeed, the inputs ι($) are not needed, and thus, we assumeN weights these respective inputs with
zero. Therefore, we consider only the expression Nφ(y1, . . . , ym+k+1) from here on. We construct
Nφ inductively over the structure of φ.

Consider the case φ = cj1x1 + · · ·+ cjmxm ≤ bj . Then, Nφ is given by a single node v computing
v(y1, . . . , ym+k) = max(0, ym+k+1−(cj1y1+· · ·+cjmym−ym+j)). Correctness is straightforward,
as this essentially computes max(0, 1

n (oφ − (cj1|w|a1 + · · · + cjm|w|am − bj))). Given what
we observed for oφ, we have that Nφ(·) > 0 if and only if (|w|a1

, . . . , |w|am
) is a solution of

cj1x1 + · · · + cjmxm ≤ bj . Next, in the case of φ = ¬(cj1x1 + · · · + cjmxm ≤ bj) we simply
construct max(0, cj1y1 + · · · + cjmym − ym+j). We remark that in both cases we have that Nφ

outputs at least 1
noφ if the condition to be checked is satisfied. Additionally, we adjust Nφ in these

base cases such that the output is at most 1
noφ, adding a component computing max(ym+k+1, y) =

max(0, x− ym+k+1) + ym+k+1, where x corresponds to the output of Nφ. Thus, we can assume
that Nφ outputs exactly 1

noφ if the condition is satisfied and 0 if not.

Next, consider the case φ = φ1 ∨ φ2, assuming that Nφ1
and Nφ2

are already given. Then,
Nφ simply computes the sum of the outputs of Nφ1

and Nφ2
. Using the same adjustment as

above, we assume that Nφ is such that it outputs exactly 1
noφ if φ1 ∨ φ2 holds. In case that

φ = φ1 ∧ φ2, again assuming that Nφ1
and Nφ2

are already given, the FNN Nφ computes the
maximum of 0 and the sum of the outputs of Nφ1

and Nφ2
minus ym+k+1. Given that Nφ1

and Nφ2 each output exactly 1
noφ if φi is satisfied, it is straightforward that Nφ also outputs

exactly 1
noφ if and only if φ1 ∧ φ2 holds. Given this construction, it is evident that Tφ is such that

Ψ−1(JφK) = {w ∈ {a1, . . . , am}∗ | Tφ accepts w$}.

D The power of NoPE without end marker

We begin with a formal definition. In the case of no end marker, we define the language of an AHAT
T over Σ as the set of all w ∈ Σ+ with T (w) = 1. In the case of no positional encoding, this yields
the class NoPE-AHAT¬em. Further restriction to uniform attention, uniform-or-tieless, or at most
ℓ attention layers, are then captured in the classes NoPE-AHAT¬em[U], NoPE-AHAT¬em[UT], and
NoPE-AHAT¬em[≤ ℓ].

D.1 Overview of results

Let us first outline our results on NoPE-AHAT without end marker.

Our proof of Theorem 3 crucially relies on the presence of an end marker. However, even without an
end marker and with two attention layers, we can still go beyond powerful formalisms. Recall that
SQRT = {w ∈ {a, b}∗ | |w|a < |w|/

√
2}.

Theorem 19. SQRT belongs to NoPE-AHAT¬em[≤ 2], but is (i) not definable in LTL[Count], (ii) not
accepted by a simplified multi-counter machine, and (iv) not semilinear.

20

Again, semilinear sets are exactly those sets of natural numbers that are definable in existential
Presburger arithmetic.

Perhaps surprisingly, in the absence of an end marker, decidability of the emptiness problem for
NoPE AHAT turns out to be equivalent to a major open problem in number theory: We show that it
is decidable if and only if solvability of Diophantine equations over the rationals is decidable. The
latter is a longstanding open problem [37].
Theorem 20. The emptiness problem for NoPE-AHAT¬em is equivalent to solvability of Diophantine
equations over the rationals.

Finally, even without an end marker, one-layer NoPE AHAT can still accept languages beyond
the complexity class AC0, and hence also beyond UHAT (even with positional encoding). Let
MAJ = {w ∈ {a, b}+ | |w|a > |w|b} be the majority language.
Theorem 21. NoPE-AHAT¬em[≤ 1] contains MAJ, a non-regular language that does not belong to
AC0. In particular, this language is not accepted by a UHAT even with positional encoding.

The fact that MAJ is not in AC0 was shown in [13, Thm. 4.3].

D.2 Expressiveness of NoPE AHAT without end marker

We now consider Theorem 19. To recognize SQRT we use that w ∈ SQRT is equivalent to
|w|2a/|w|2 < 1

2 . We encode the letters by a 7→ (1, 0) and b 7→ (0, 1). In a first attention layer we
compute the frequency |w|a

|w| of the letter a in w while we replace each position of letter b by 0. In a
second attention layer, we square the frequency of a in each position. In the end, we accept if this
value is < 1

2 . To this end, we compute t = 1/2− |w|2a/|w|2 and accept if and only if t > 0.

Lemma 22. SQRT ∈ NoPE-AHAT¬em[≤ 2]

Proof. Let us now construct an AHAT without end marker and with two layers SQRT. To this end,
we view SQRT as

SQRT =

{
w ∈ {a, b}+

∣∣∣∣ |w|2a|w|2 < 1

2

}
.

We encode a by a = (1, 0) ∈ R2 and b by b = (0, 1) ∈ R2. Suppose we are given as input a
non-empty string over {a, b}, with na occurrences of a and nb occurrences of b.

Layer 1. Computing frequencies The first layer performs the following replacement:

a⇝ na

na+nb

b⇝ 0 .

Thus, we replace (i) every occurrence of a with its frequency na

na+nb
and (ii) every occurrence of b

with the value 0. This is done by choosing the matricesK andQ so that ⟨Ka, Qa⟩ = ⟨Ka, Qb⟩ = 1,
whereas ⟨Kb, Qa⟩ = 0 and ⟨Kb, Qb⟩ = 1, which is easy to achieve. Thus, for input positions
holding a, we take the average over all input letters, yielding the attention vector

v = na

na+nb
· a+ nb

na+nb
· b = (na

na+nb
, nb

na+nb
) .

For input positions holding b, we take the average just over the b positions, yielding the attention
vector b. Then, we choose a neural netN so thatN (a,v) = na

na+nb
andN (b, b) = 0 which is indeed

the replacement above.

Layer 2. Squaring and spreading The second layer computes the value n2
a

(na+nb)2
on all positions.

We achieve this as follows. We chooseK andQ so that for all positions i and j, the value ⟨Kvi, Qvj⟩
is 1, thus yielding the attention vector with left-most component

na

na+nb
· na

na+nb
+ nb

na+nb
· 0 =

n2
a

(na+nb)2

We can then set up a neural net N that outputs n2
a

(na+nb)2
on all positions.

21

Finally, another neural net computes t = 1
2 −

n2
a

(na+nb)2
in each position. Then we know that t > 0

iff n2
a

(na+nb)2
< 1

2 iff the input word is in SQRT. Note that the case t = 0 is impossible since |w|a
|w| is

always a rational number, but 1√
2

is irrational. Hence, the constructed AHAT accepts exactly the
language SQRT.

Moreover, we show that SQRT is not semilinear. To this end, we argue that the supremum over
all ratios of one entry compared to the entry sum in a semilinear set must either be∞ or a rational
number; whereas for SQRT, this supremum is 1/

√
2 and hence irrational.

We make use of the concept of semilinear representations of a set S ⊆ Nd, meaning S is represented
as a

⋃
i Ui of sets Ui, each generated by a base vector ai ∈ Nd and period vectors bi,j ∈ Nd. It is

known that such semilinear representations generate all semilinear sets (see [14, Thm. 1.3]).
Lemma 23. The Parikh image of SQRT is not semilinear.

Proof. For every vector x = (x1, x2) ∈ N2 \ {0}, define ρ(x1, x2) := x1

x1+x2
and for a set S ⊆ N2,

define the quantity ρ(S) = sup{ρ(x) | x ∈ S} ∈ R ∪ {∞}. Now observe that if S ⊆ N × N is
semilinear, then ρ(S) is∞ or a rational number: Indeed, take the maximum value of ρ among all
base vectors and period vectors in a semilinear representation for S—this rational number is the
supremum of all ρ(x) with x ∈ S. However, for the Parikh image Ψ(SQRT) of SQRT, we have
ρ(Ψ(SQRT)) = 1√

2
, meaning Ψ(SQRT) cannot be semilinear.

For Theorem 21, we also begin with a sketch. The language MAJ is clearly contained in QFPA, and
thus in NoPE-AHAT[≤ 1] = QFPA (Theorem 6). However, the construction in Theorem 6 reveals
that if all inequalities in a given QFPA formula are homogeneous, i.e. of the form c1x1+· · ·+cmxm <
0, then the language can even be accepted without an end marker. Essentially, the end marker is used
to get access to the frequency 1

n+1 , where n is the length of the input word; however homogeneous
inequalities can be expressed purely in terms of input letter frequencies (i.e. without 1

n+1), yielding
membership in NoPE-AHAT¬em[≤ 1].

We begin by defining homogeneous inequalities as those whiche are of the form c1x1+ · · ·+cmxm <
0. Let QFPAhom denote the languages of QFPA defined by a quantifier-free PA formula where all
inequalities are homogeneous. Considering AHAT with a single layer and without a designated end
marker, the construction provided in the proof of Theorem 6 in Appendix C.2 applies directly to show
that QFPAhom is captured by NoPE-AHAT¬em[≤ 1]. The key insight is that all constant terms bj of
all atomic subformulas of some φ ∈ QFPAhom are zero, which is respected by the embedding ι of
Tφ for each input symbol ai. We thus have:

Proposition 24. QFPAhom ⊆ NoPE-AHAT¬em[≤ 1].

This allows us to show Theorem 21:

Proof of Theorem 21. The language MAJ clearly belongs to QFPAhom and thus by Proposition 24,
to NoPE-AHAT¬em[≤ 1]. Moreover, MAJ is well-known not to be in AC0 [13, Thm. 4.3]. Since
all languages accepted by UHAT are in AC0 [19], we also know that MAJ is not accepted by a
UHAT.

D.3 The emptiness problem without an end marker

Let us begin with an intuition on Theorem 20. In the proof of Theorem 1, the presence of the end
marker allows us to assume that among the frequencies fi = |w|ai/(n+ 1)—where n is the input
length—the frequency for the end marker always holds 1/(n+1). This frequency is used to precisely
compute the value the given polynomial, up to a factor 1/(n + 1)d, where d is the polynomial’s
degree. Without an end marker, we don’t have access to 1/(n + 1). However, we still know that
the frequencies will satisfy f1 + · · ·+ fm = 1 and we can ensure f1, . . . , fm > 0. By using similar
techniques as above, we can again evaluate the given polynomial on the frequencies. This way, we
can reduce the problem of deciding whether a given polynomial p has a rational solution f1, . . . , fm
such that f1, . . . , fm > 0 and f1 + · · ·+ fm = 1. Additionally, we argue algebraically that deciding

22

whether a given polynomial has such a rational solution is as difficult as deciding whether a given
polynomial has any rational solution. The converse reduction uses ideas similar to Proposition 10.

In this subsection, we prove Theorem 20.

Reduction from Diophantine to AHATs. Suppose we are given a diophantine equation
p(x1, . . . , xm) = 0. First, we need another equation q(y1, . . . , yk) = 0 such that the initial one has a
rational solution the new one has a rational solution, satisfying y1, . . . , yr > 0, y1 + . . .+ yr = 1.
Indeed, consider the following “diophantine equation”

p

(
y1
z1
− u1
v1
, . . . ,

ym
zm
− um
vm

)
= 0, (4)

which we transform to the polynomial form via multiplying by sufficiently large degrees of zi’s
and vi’s. On the one hand, if this diophantine equation has a rational solution with zi ̸=, vi ̸= 0,
the original one also has a rational solution. On the other hand, every rational number x can be
represented as x = y

z −
u
v for some positive y, z, u, v. Hence, if the original equation has a rational

solution, the new one has a solution where every variable is strictly positive. Moreover, we can
multiply all variables in this solution by the same constant, thus making their sum equal to 1.

Now, given a diophantine equation q(y1, . . . , ym) = 0, we construct an AHAT that accepts at least
one word if and only if the diophantine equation has a rational solution satisfying y1, . . . , ym > 0
and y1 + . . .+ ym = 1. The input alphabet will be Σ = {σ1, . . . , σm}, where m is the number of
variables. It is enough to construct an AHAT that, given an input word w with frequences of letters
f1, . . . , fm, accepts w if and only if f1 > 0, . . . , fm > 0, and q(f1, . . . , fm) = 0.

For that, we show that for any monomial in f1, . . . , fm there is an AHAT the computes the value
of this monomial in every position. The argument is by induction over the degree of the monomial.
The induction base is trivial, with 0 layers we can compute 1/ in every position. Now, take non-zero
degree monomial M . Let M = fkM1, where fk is a variable and M1 is a monomial of smaller
degree. By the induction hypothesis, there exists an AHAT the computes M1 in every position. Using
a ReLU network, we can compute a sequence

αi = I{wi = σk}M1.

Indeed, utilizing the fact that the absolute value of M1 does not exceed 1, we can write:

αi = ReLU(M1 − I{wi ̸= σk})
Taking the average of αi, we obtain M1 times the frequency of the letter σk, that is fkM1 =M , as
required.

In this way, we can calculate f1 · . . . · fm and q2(f1, . . . , fm) in every position. We have to accept
the word if the first quantity is strictly positive and the second one is not positive.

To do this, we prove the following lemma: there is an AHAT that, given a number x, bounded by
an absolute constant C in the absolute value, output 1 if x > 0 and 0 otherwise. We apply it first
to x = f1 . . . fm and then to x = q2(f1, . . . , fm), and accept if and only of the first output minus
second output > 1/2. We can bound the absolute value of q2(f1, . . . , fm) computably because this
is a fixed polynomial, taken on inputs, not exceeding 1 in the absolute value.

Finally, we prove the lemma. First, having x, we can compute y = ReLU(x), and it remains to
distinguish the case y is strictly positive from the case y is 0. For any input letter σ, we can then
compute the sequence:

αi = I{wi = σ}y = ReLU(y − C · I{wi ̸= σ}).

We can then consider an attention which is for position i is equal to αi. If y > 0, this will give us a
uniform distribution over positions with σ, and if y = 0, this will give us the uniform distribution
over all position. Taking the average over the indicator sequence I{wi = σ}, we obtain 1 in the first
case and fi in the second case. Doing this for all input letters and summing the results, we obtain
some quantity z which is m if y > 0 and 1 if y = 0, and it remains to output ReLU(z − (m− 1)),

Reduction from AHATs to Diophantine. For a given AHAT we construct a disjunction of systems
of diophantine equations and inequalities such that, this AHAT accepts a given word w = w1 . . . wm

if and only if frequences of letter in this word satisfy one of the systems.

23

Why is this enough? We can check feasibility of every system separately. Now, how to reduce a
system of diophantine equations and inequalities to a single equation? If there are just equalities,
this is easy using sum of squares of equations. Now, inequalities can be dealt with thanks to the
Lagrange’s four-square theorem, implying that every non-negative rational number can be written
as the sum of 4 squares of rationals. That is, we replace every inequality p ≥ 0 into equality
p = x2 + y2 + z2 + w2 for fresh variables x, y, z, w. A strict inequality p > 0 can be simulated by
(1 + x2 + y2 + z2 + w2)p = 1 + a2 + b2 + c2 + d2.

Next, observe that the value of a token in an AHAT without positional encoding determined by the
input letter (there is no way we can distinguish two tokens with the same input letter). Thus, we
can define x(ℓ)σ , the value in a token with input letter σ ∈ Σ after ℓ layers. The values, keys, and
queries at this level are linear functions of x(ℓ)σ . The outcome of the layer is determined by finitely
many comparisons of expressions of the form k

(ℓ)
σ1 q

(ℓ)
σ2 . Under any fixations of the results of these

comparisons, attention vectors a(ℓ)σ become polynomials of x(ℓ)σ and fractions of the letter. Indeed,
for each letter σ ∈ Σ there is an argmax set S ⊆ Σ such that:

a(ℓ)σ =

∑
δ∈S

nfσv
(ℓ)
σ∑

δ∈S

nfσ
,

and n, input lenght, cancels out. Then we pass a(ℓ)σ + x
(ℓ)
σ to a fixed neural netN , where under fixing

results of comparisions of neurons, everything is linear.

As a result, we partition the whole space of possible values of variables into finitely many systems of
polynomial inequalities such that for each system, values of tokens are fixed polynomial expressions.
It remains to add to each system a statement that the first coordinate of the last token is positive.

24

	Introduction
	Preliminaries
	Summary of results
	Characterizing the power of NoPE-AHAT
	Parametric analysis
	Beyond AHAT
	Concluding Remarks
	Omitted proofs from Section ??
	Permutation-invariant languages of simplified multicounter machines
	Permutation-invariant languages of LTL with counting
	Proof that each permutation-invariant language is in TC0

	Omitted proofs from Section ??
	Closure under union and intersection

	Omitted proofs from Section ??
	Capturing recursively enumerable languages
	One layer NoPE-AHAT

	The power of NoPE without end marker
	Overview of results
	Expressiveness of NoPE AHAT without end marker
	The emptiness problem without an end marker

